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Ozone treatment is a cost-effective and eco-friendly food-processing technology. It has successfully
been used for the removal of milk residues and biofilm-forming bacteria from stainless steel sur-
faces and in milk processing, including fluid milk, powdered milk products and cheese. Ozonation
has been shown to prevent mould growth on cheese and inactivate airborne moulds in cheese ripen-
ing and storage facilities. Ozone treatment has also been found to be a promising method for
reducing the concentrations of pollutants in dairy wastewaters.
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INTRODUCTION

Ozone (O3) is the second strongest common oxi-
dising agent after fluorine (Guzel-Seydim et al.
2004). It was discovered by Sch€onbein in 1839
and was first used commercially to treat drinking
water in France more than a century ago (Hill and
Rice 1982; Rubin 2001). Ozonation applications
in food processing have been legally approved,
although to varying degrees, in North America,
Australia, New Zealand, Japan and several Euro-
pean countries (Tiwari and Rice 2012). The
specific rules and regulations issued by the US
FDA with respect to ozonation of food products,
including bottled water, have triggered increased
global interest in the use of ozone for food treat-
ment and processing purposes (United States
Department of Health and Human Services, Food
and Drug Administration 2001; O’Donnell et al.
2012a; Tiwari and Rice 2012). In many parts of
the world, ozonation is becoming more and more
widely accepted in the food industry as an eco-
friendly green technology (Pascual et al. 2007;
O’Donnell et al. 2012a).
A number of reviews, book chapters and books

have been published on the use of ozone in the
food industry over the past decade (Guzel-Seydim
et al. 2004; Wysok et al. 2006; Pascual et al.
2007; Freitas-Silva and Venâncio 2010; O’Don-
nell et al. 2012b; Patil and Bourke 2012). Recent
developments of note include approaches involv-
ing the combined use of ozone and other advanced
food-processing methods, such as washing with

electrolysed water, ultrasound treatment, ultravio-
let irradiation and modified atmosphere packag-
ing (Baumann et al. 2009; Steffen et al. 2010).
Mention must also be made of a novel in-package
ionisation (plasma) technology whereby signifi-
cant levels of ozone are generated inside sealed
packages of food products using high-voltage,
low-current electrodes placed below and above
the package (Klockow and Keener 2009). Such
approaches are suitable for a variety of food
applications, from meat products to fresh produce
(O’Donnell et al. 2012a; Tapp and Rice 2012).
To our knowledge, this is the first comprehensive
review of the use of ozone in the dairy industry.

Physical properties and generation of ozone
The major physical properties of ozone are
shown in Table 1. Ozone, a bluish gas with
pungent smell, is an extremely reactive and
unstable allotrope of oxygen (O2) possessing a
high oxidation potential of �2.07 V that con-
veys broad-spectrum antimicrobial properties. It
is produced by the reaction of free oxygen radi-
cals with O2 molecules. Numerous methods
exist for the generation of ozone, including elec-
tric corona discharge, ultraviolet radiation, ther-
mal, chemical, electrolytic and chemonuclear
methods (Horvath et al. 1985; Kim et al. 1999;
Khadre et al. 2001; Patil and Bourke 2012).

Benefits of ozone usage in food processing
Despite being a highly effective disinfectant,
ozone does not leave a chemical residue on
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either food or food contact surfaces because it quickly
autodecomposes to nontoxic products, thereby reducing both
the environmental impacts and costs of the company
(Khadre et al. 2001; Pascual et al. 2007; Cullen and Norton
2012; O’Donnell et al. 2012a; Patil and Bourke 2012).
Another advantage of the application of ozone in food-pro-
cessing operations is that ozone can be generated on-
demand on-site and, as opposed to conventional chemical
sanitisers, it requires neither transportation nor storage
(Khadre et al. 2001; Pascual et al. 2007; Cullen and Norton
2012). In addition, the running costs of ozonation systems
are low because they only consume a limited amount of
electricity (Pascual et al. 2007).

Factors influencing ozonation efficiency
The efficacy of ozone in food-processing applications is
affected by a range of variables, including treatment temper-
ature, pH value, relative humidity and the quantity of
ozone-consuming compounds, because all these factors dif-
ferently affect the solubility, reactivity and stability of ozone
(Khadre et al. 2001; Cullen and Norton 2012).
As temperature increases, ozone becomes less stable and

less soluble but more reactive. Therefore, temperature
should be carefully controlled during ozonation in order to
maintain a balance in solubility, stability and sanitising effi-
cacy (Kim et al. 1999; Khadre et al. 2001; Cullen and
Norton 2012). As for pH, it is widely accepted that ozone is
less stable at high than at low pH values. However, when
ozone autodecomposes at high pH values, the radicals
formed evidently contribute to its efficacy (Khadre et al.
2001; Cullen and Norton 2012). As far as humidity is con-
cerned, microbial destruction rates are greater when ozone
is used in an atmosphere having an increased relative
humidity (Ewell 1946; Kim et al. 1999). Finally, dissolved
organic matters are known to reduce the disinfection rate by
competing with the micro-organisms for ozone. Hence, the

absence of organic compounds in ozonated water to be used
in food processing is highly desirable (Khadre et al. 2001;
Cullen and Norton 2012; Patil and Bourke 2012).

Inactivation of micro-organisms and microbial products
by ozonation
Microbial inactivation by ozonation is a complex process.
Ozone is capable of attacking various constituents in cell
membranes, cell walls, the cytoplasm, endospore coats,
virus capsids and viral envelopes (Khadre et al. 2001; Patil
and Bourke 2012). It is noteworthy that the double bonds of
unsaturated fatty acids are especially vulnerable to ozone
attack (Guzel-Seydim et al. 2004). The powerful antimicro-
bial properties of ozone are due to its previously mentioned
high oxidation potential and its capability to diffuse through
biological membranes (Hunt and Mari~nas 1997).
As a general rule, all micro-organisms have an inherent

sensitivity to ozone (Patil and Bourke 2012). Moulds are
more resistant than yeasts, and yeasts are more resistant than
bacteria, with gram-negative bacteria being even more sensi-
tive than gram positives. Ozone is less effective against both
fungal and bacterial spores than vegetative cells (Kim et al.
1999; Moore et al. 2000; Khadre et al. 2001; Pascual et al.
2007; Cullen and Norton 2012; Patil and Bourke 2012).
Viruses are similar to bacteria in sensitivity to ozone with
bacteriophages showing the least resistance (Khadre et al.
2001). It should also be noted that ozone was successfully
used to detoxify commonly occurring mycotoxins by either
completely degrading them or causing chemical
modifications, thus considerably reducing their bioactivity
(McKenzie et al. 1997; Lemke et al. 1999; Freitas-Silva
and Venâncio 2010; Patil and Bourke 2012).

Health and safety aspects of ozone application
Exposure to ozone at low concentrations of around 0.1 mg/L
only causes irritation to the eyes, throat and nose, whereas
ozone levels as high as 95 mg/L can even have irreversible
lethal effects on humans (Khadre et al. 2001; Cullen and
Norton 2012). Therefore, efficacious systems for the detection
and catalytic or thermal destruction of ozone are reasonably
required for the safety of personnel in food-processing plants
(Kim et al. 1999). This is especially important if ozone is
used in the gaseous form. In such cases, a continuous ozone
analyser must be installed which triggers a general alarm (i.e.
both acoustic and visual warning signals) as soon as the con-
centration of ozone exceeds 0.1 ppm (equalling 0.2 mg/m3)
in the atmosphere of the ozonation room (Damez et al. 1991;
Khadre et al. 2001; Cullen and Norton 2012).

USE OF OZONE ON DAIRY FARMS

Implementation of good hygienic practices on dairy farms is
a prerequisite for the production of high-quality and
microbiologically safe raw milk. Given that ozone is a

Table 1 Physical properties of ozone (Manley and Niegowski 1967;
Rice et al. 1981; Kim et al. 1999; Khadre et al. 2001; Guzel-Sey-
dim et al. 2004)

Parameter Value

Molecular weight 48
Density (kg/m3) 2.14
Boiling point (°C) �111.9
Melting point (°C) �192.6
Critical temperature (°C) �12.1
Critical pressure (atm) 54.6
Oxidation potential (V) �2.07
Solubility in water at 0 °C (L/L) 0.640
Solubility in water at 15 °C (L/L) 0.456
Solubility in water at 40 °C (L/L) 0.112
Solubility in water at 60 °C (L/L) 0.000
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powerful oxidising agent active against a wide range of
micro-organisms, including viruses, bacteria, yeasts, moulds
and protozoa (Restaino et al. 1995; Kim et al. 1999; Moore
et al. 2000; Khadre et al. 2001; Fontes et al. 2012; Patil
and Bourke 2012), ozone treatment can be applied on dairy
farms for a variety of reasons and purposes.
The pipelines, which carry the milk from individual milk-

ing stations to the bulk tank, have to be cleaned after every
milking. Hot water with chemicals is generally used in the
cleaning and disinfection processes consuming a large
amount of energy and chemicals. The use of ozone can con-
siderably lower chemical costs and completely eliminate hot
water costs on dairy farms. Heacox (2013) filed a patent for
an ozone delivery method, system and apparatus whereby
ozonated water, containing ozone at a preferable level of
0.04–1.2 ppm, is used to clean and disinfect dairy animals,
milking equipment and various surfaces in dairy settings. If
the hind legs, udder and teats of cows are thoroughly
washed off with ozonated water prior to milking, many
hygienic problems may easily be prevented (Ozone Systems
2014).
Ozone has even been successfully used to treat bovine

mastitis (Ogata and Nagahata 2000), the costliest and most
common disease in dairy production (Peles et al. 2007).
When 6–30 mg of ozone was infused into each inflamed
udder quarter of cows with acute clinical mastitis, 60% of
sick animals completely recovered without administration of
antibiotics. In these cases, the efficacy of ozone therapy was
identical to that of an antibiotic treatment. The authors have
concluded that ozone therapy is a safe, effective and inex-
pensive method of curing mastitis without leaving antibiotic
residues in raw milk (Ogata and Nagahata 2000).
Another use of ozone on dairy farms is its addition, at

very low concentrations, to the air in the barn in order to
destroy airborne pathogens and eliminate manure smell in
the barn (Ozone Systems 2014).

USE OF OZONE IN DAIRY PROCESSING

The major dairy processing applications of ozone are
reviewed in the following subsections and are also sum-
marised by category in Table 2.

Removal of milk residues and biofilm-forming bacteria
from stainless steel surfaces
A prerinse with warm water is normally the first step in
cleaning dairy processing equipment in order to remove the
bulk of milk residues (aka dairy soil). Guzel-Seydim et al.
(2000) quantified and visualised the effectiveness of warm
water (40 °C) and ozonated cold water (10 °C) as a prerinse
for removing dairy soil from stainless steel plates. Scanning
electron micrographs showed that the metal surfaces were
cleaned more efficiently by ozonation than by the 40 °C
warm water treatment. According to the results of chemical

oxygen demand (COD) measurements, ozonated water
removed 84% of milk residues from plates, whereas the
nonozonated warm water treatment removed only 51% of
dairy soil materials, but the two values did not differ signifi-
cantly (P > 0.05). Similarly, Fukuzaki (2006) and Jurado-
Alameda et al. (2014) studied the suitability of ozone for
removal of heat-denatured whey proteins from stainless steel
surfaces. Both aqueous and gaseous ozonation facilitated
whey protein desorption.
The micro-organisms adhered to milk contact surfaces

are hard to destroy and may cause deterioration in the
microbiological quality of milk and dairy foods. Ozonation
is a possible alternative to the chlorine-based sanitisers
widely used in the dairy industry (Guzel-Seydim et al.
2004). Greene et al. (1993) found that ozonated deionised
water containing 0.5 ppm of ozone was capable of reduc-
ing the populations of common psychrotrophic milk spoi-
lage bacteria (Pseudomonas fluorescens and Alcaligenes
faecalis) on stainless steel plates by more than 4 log10
cycles during a 10-min exposure time. The effectiveness of
ozonated water against biofilms of P. fluorescens and
A. faecalis was superior to that of a commercial chlorinated
sanitiser used at 100 ppm for 2 min. Similar findings were
reported by Dosti et al. (2005), who determined that both
ozone (0.6 ppm for 10 min) and chlorine (100 ppm for
2 min) significantly reduced the populations of three Pseu-
domonas species in biofilms on stainless steel coupons, as
compared to the control (P < 0.05). It is also worth noting
that the combined application of ozone and power ultra-
sound is even more effective for bacterial biofilm removal
than either treatment alone (Bott and Liu 2004; Krasnyj
et al. 2008; Baumann et al. 2009).
However, the use of ozonated water can only be recom-

mended to replace warm water and chlorine for cleaning
and sanitising purposes, respectively, if the surfaces of dairy
processing equipment are not adversely affected. In a trial
by Greene et al. (1999), approximately 0.4–0.5 ppm of
ozone pulsed into water at 21–23 °C for 20 min per day
over a 7-day period caused a certain degree of weight loss
of all materials tested (i.e. aluminium, copper, stainless steel
and carbon steel). It was therefore concluded that special
attention is required when pulsed ozonation is applied to
dairy chilling water systems containing copper or carbon
steel parts.

Fluid milk
Raw milk is traditionally treated with thermal processes in
order to be safe for human consumption. Heating, however,
may negatively influence both the nutritional value and the
sensory properties of milk. For this reason, Sander (1985)
patented a method for the mild ozone treatment of liquids,
including milk and fluid dairy foods, thereby minimising
their possible quality deterioration. Rojek et al. (1995) used
pressurised ozone (5–35 mg/L for 5–25 min) to preserve
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skim milk by decreasing its microbial populations. The
treatment was shown to reduce the number of psychrotrophs
by more than 99%. Sheelamary and Muthukumar (2011)
completely eliminated Listeria monocytogenes from both
raw and branded milk samples through ozonation.
In a recent study, the efficacy of microbial inactivation in

raw milk by ozone treatment was evaluated (Cavalcante
et al. 2013a). Ozone gas bubbling at 1.5 mg/L for 15 min
was found to reduce bacterial and fungal counts by up to 1
log10 cycle. Ozonation alone, therefore, was not capable of
killing a sufficiently high percentage of the microbiota of
raw milk.
A gentle process involving pre-ozonation followed by a

conventional pasteurisation step has been developed by a
Swedish company (Pastair 2014). The treatment is claimed
to result in commercial fluid milks with an extended shelf
life without causing excessive lipid or protein oxidation in
the final products.

Powdered milk products
Cronobacter spp., previously known as Enterobacter
sakazakii, have recently been associated with fatal neonatal
infections (Joseph and Forsythe 2011). These organisms are
frequently isolated from milk powder and the environments
of dried milk production facilities (Kandhai et al. 2004;
Torlak and Sert 2013). Ozonation was shown by Torlak and
Sert (2013) to be an effective method of destroying
Cronobacter sakazakii ATCC 51329 cells in milk powders,
especially in dried skim milk. The authors exposed whole
and skim milk powder samples to gaseous ozone at concen-
trations of 2.8 mg/L or 5.3 mg/L for 0.5–2 h. Both ozone
levels reduced Cronobacter counts in skim milk powder by
approximately 3 log10 orders following 120 min of expo-
sure. The effectiveness of ozone treatment was, however,
adversely affected by the presence of fat in the product,
because a reduction of only <2 log10 units was observed in
the viability of C. sakazakii in whole milk powder after 2 h
of gaseous ozonation.
Ozone treatments may also influence the chemical, physi-

cal, functional and organoleptic properties of dried milk
products. Spray-dried skim milk powders manufactured
under a background ozone level of 32 ppb received signifi-
cantly lower sensory scores from a trained taste panel than
those produced in air containing 2 ppb of ozone (Kurtz
et al. 1969). In the same study, whole milk powders were
shown to suffer more ozone damage than skim milk pow-
ders, suggesting that reactions between milk fat and ozone
were responsible for the off-flavour produced. These obser-
vations were later confirmed by Ipsen (1989), who reported
a negative effect of ozone on the sensory quality of dry
whole milk due to lipid oxidation.
Uzun et al. (2012) treated whey protein isolates with gas-

eous and aqueous ozone. According to their results, ozona-
tion substantially enhanced the foaming capacity and foam

stability of proteins; however, both the solubility of whey
proteins and the emulsion stability were reduced. It is note-
worthy that gaseous ozone treatments decreased the solubil-
ity of protein samples to a greater degree than did aqueous
ozonation. Similar findings were reported by Segat et al.
(2014b), who concluded that tailored whey proteins with
specific functionality may be developed through ozone
processing.

Cheese and indoor atmosphere in cheese ripening and
storage rooms
Ozone was used in cheese-storage facilities first in the USA
as early as in the 1940s (Brunner 1958; Tiwari and Rice
2012). Some years later, the application of ozone at low
levels to prevent mould growth on cheese during ripening
was recommended by various authors (Ewell 1950; Walter
1951). Gibson et al. (1960) employed two ozone concentra-
tions to combat a well-established mould growth and inhibit
mould development on Cheddar cheese. High-ozone levels
of 3–10 ppm appeared to destroy heavy mould growth, but
a few days after ozonation was stopped, a profuse growth
of mould developed on Cheddar cheese samples, indicating
that the moulds were not killed. Even low-ozone concentra-
tions of 0.2–0.3 ppm were observed to remarkably decrease
the relative size of mould-covered areas on cheese surfaces.
The high-ozone and low-ozone treatments also reduced the
mean mould spore counts in the curing rooms by 94% and
88%, respectively. No flavour defects resulting from the
ozone treatments were detected in any of the cheese samples
tasted.
Volodin and Shiler (1978) tested the usability of various

plastic films for cheese packaging purposes. They found that
thick films (37–480 lm) were not permeable to ozone,
whereas thin films (12 lm), because of their ozone perme-
ability, were suitable for ozone-based surface sterilisation of
packaged cheese.
Gabriel’yants’ et al. (1980) stored Russian- and Swiss-

type cheeses under refrigeration (2–4 °C, 85–90% RH) with
or without ozonation of the air in the storage room. Periodi-
cal treatments with 2.5–3.5 ppm of ozone for 4 h at 2- to 3-
day intervals prevented mould growth on both cheeses and
packaging materials for at least 4 months without adversely
affecting the sensory properties and chemical composition
of the cheese. By comparison, mould growth was observed
on control cheese following 1 month of storage. In another
trial, the application of 10 ppm of ozone during cheese
ripening increased the shelf life of products to 11 weeks
(Horvath et al. 1985).
In a study by Morandi et al. (2009), three types of Italian

cheese (i.e. Ricotta Salata di Pecora, Taleggio PDO and
Gorgonzola PDO) were artificially surface-contaminated
with up to 103 colony-forming units (cfu)/g of L. monocyto-
genes T20 at various stages of the ripening process and
were then treated with 4 ppm of gaseous ozone for 8 min.

© 2016 Society of Dairy Technology 163

Vol 69, No 2 May 2016



Ozonation reduced L. monocytogenes counts to below
10 cfu/g in ricotta. As for Taleggio and Gorgonzola, ozone
treatment was only effective against the test organisms dur-
ing the first 6 and 3 days, respectively, of the ripening per-
iod. It is also worth mentioning that ozonation retarded the
process of cheese ripening.
The microbiological quality of a Brazilian fresh cheese,

Minas Frescal, treated with ozonated water (2 mg/L) for 1–
2 min was monitored during refrigerated storage (Caval-
cante et al. 2013b). Ozonation reduced the initial counts of
total aerobic mesophiles, lactic acid bacteria, yeasts and
moulds by approximately 2 log10 cycles; however, it did not
affect the growth or survival rates of these micro-organisms
throughout the 30-day storage period. The ozone treatments
applied induced no changes in the physicochemical proper-
ties of Minas Frescal cheese samples.
Segat et al. (2014a) evaluated the efficacy of different

ozone treatments for decreasing the viable counts of spoi-
lage bacteria during mozzarella cheese production. Ozone
proved incapable of disinfecting cheese surfaces when sam-
ples were (a) packaged with preserving liquid containing
2 mg/L of ozone or (b) contaminated with 107 cfu/g of
Pseudomonas spp. and then placed in ozonated water (2–
10 mg/L) for 60 min or (c) treated with gaseous ozone (10–
30 lg/L) for up to 2 h. By contrast, mozzarella cheese sam-
ples cooled in water pretreated with 2 mg/L of ozone were
characterised by low microbial counts, as compared to the
control cheese. The authors concluded that ozone treatment
of tap water used in several steps of mozzarella cheesemak-
ing improves the microbiological quality of finished prod-
ucts, thereby increasing their shelf life.
Cheese ripening rooms have a special environment that

encourages mould growth. Therefore, if the room is contam-
inated with mould spores, unpackaged cheese will most
likely become mouldy. Ozonation is an effective method for
inactivating airborne moulds (Cullen and Norton 2012).
Shiler et al. (1978) reported that ozone concentrations of

approximately 0.05 ppm and 5 ppm in the air of a cheese
ripening room inactivated 80–90% and 99%, respectively,
of mould spores without negatively influencing the
organoleptic properties of cheeses. The same group of
researchers developed a method for ozonation during cheese
ripening and storage to inactivate contaminating micro-
organisms, thus improving the hygiene of cheesemaking.
For best results, ozone treatments were carried out for
1–3 h each day at ozone concentrations of 40–50 ppb in the
atmosphere with intervals of 2–12 h, and every 10–30 days
the chambers were treated with ozone at the rate of
4–6 ppm for 2–4 h (Shiler et al. 1983).
In a later experiment, a cheese ripening room was ozo-

nated for 20 weeks, and the effectiveness of the treatment
was monitored on a weekly basis both in the air of the room
and on surfaces (Serra et al. 2003). Ozone gas proved to be
very effective in reducing the total numbers of viable mould

spores in the atmosphere of the closed cheese ripening
room, whereas it failed to decrease the viable mould load
on surfaces. It was concluded that gaseous ozonation might
not eliminate the growth of moulds already present on the
surface of cheese entering the ripening room; however, it
might reduce or prevent the sedimentation of airborne
moulds during the ripening process (Serra et al. 2003). In a
40-day trial by Pinto et al. (2007), gaseous ozone treatment
caused decreases of 0.74, 0.93 and 2.07 log10 cycles
(P < 0.05) in fungal viable counts on extra-hard cheese and
shelf surfaces and in the atmosphere of the cheese matura-
tion chamber, respectively. Similarly, Lanita and da Silva
(2008) determined that 60-day ozonation reduced the num-
bers of airborne yeasts and moulds by 63% in the air of a
Parmesan-type cheese ripening room.
Based on the official opinion of the National Food Safety

Committee (CNSA), the Italian Ministry of Health (2010)
endorses the use of ozone for disinfecting empty cheese
ripening and storage facilities. Interestingly, a British com-
pany has claimed that regular ozone treatments in cheese
stores are even capable of eliminating mite damage (Ozone
Industries 2003).

Wastewater treatment in dairy processing
Water plays a pivotal role in a wide range of operations,
including cleaning, disinfection, cooling and heating, carried
out in the dairy industry (Riedewald 2011; Norton and Mis-
iewicz 2012). For this reason, dairy processing plants use
huge amounts of water and, as a consequence, generate
large quantities of wastewater, the latter being characterised
by high organic contents (Assalin et al. 2004; L�aszl�o et al.
2007; Pascual et al. 2007; Rad and Lewis 2014; Packyam
et al. 2015). Dairy wastewaters are conventionally purified
with physicochemical and biological methods (Baskaran
et al. 2003; L�aszl�o et al. 2007). Over the recent years,
however, several researchers have tested ozonation, using it
either alone or in combination with other technologies, in
order to reuse, at least in part, the wastewater produced by
the dairy sector.
Ozone treatment was employed by Loorits et al. (1975) to

oxidise major components in a dairy effluent. Ozonation
was shown to decrease the initial fat content of 80–230 mg/
L by 96–98%, thereby enabling the lightly polluted effluent
to be discharged into natural watercourses.
In more recent investigations, L�aszl�o et al. (2007, 2009)

have also found ozone treatment to be a very promising
method for reducing the concentrations of organic pollutants
in dairy wastewaters. Owing to its microflocculation effect,
ozonation increased the removal of COD from dairy
wastewater samples during subsequent nanofiltration. In
addition to this, the biodegradability of the pre-ozonated
nanofiltration retentates was 40% (equalling 27.6 percentage
points) higher than that of the untreated (i.e. nonozonated)
retentate samples (L�aszl�o et al. 2007).
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Similar observations were made by Sivrio�glu and Yonar
(2015) in a study, wherein an iron sulphate (FeSO4)-based
chemical coagulation method and advanced oxidation pro-
cesses, including ozonation, were tested and compared as
possible pretreatment alternatives for a high-strength dairy
effluent, with 6300 mg/L of COD, prior to discharge to a
biological wastewater treatment plant. Pre-ozonation trials
were run with an ozone level of 2 g/h at pH values of 7–
12. The highest COD removal rate (71%) was obtained in
the effluent at pH 12 following a treatment period of
240 min. Ozonation proved to be a technically efficient but
economically inefficient dairy wastewater pretreatment
method compared with the FeSO4 coagulation process
because the treatment costs, excluding the costs of sludge
disposal and labour, were calculated to be €7.62/m3 and
€0.42/m3, respectively.
In an attempt to enhance the efficiency of sludge disinte-

gration, Packyam et al. (2015) applied a combined phase-
separation method, involving ultrasonically induced defloc-
culation and cell lysis through ozonation, for the pretreat-
ment of a dairy waste activated sludge characterised by
soluble COD, suspended solids (SS) and total solids (TS)
levels of 400 mg/L, 7000 mg/L and 12 560 mg/L, respec-
tively. Under optimum operating conditions (76.4 kJ/kg TS
of specific energy and 0.0011 mg O3/mg SS), the ultra-
sound-mediated ozone pretreatment resulted in considerably
increased COD solubilisation and SS reduction percentages
compared with single pre-ozonation, and it also enhanced
the anaerobic biodegradation potential of the dairy waste
activated sludge. However, it must be noted that the eco-
nomic feasibility of this novel phase-separated sono-ozone
pretreatment is questionable because, according to the
authors’ calculations, the net cost of (i.e. loss on) a ton of
sludge thus treated is $4.21.
Martins and Quinta-Ferreira (2010) studied the possibility

of using ozone for oxidising biologically pretreated cheese
whey wastewaters to obtain effluents dischargeable to natu-
ral aquatic systems. Single ozonation, especially at an alka-
line pH of 10, substantially decreased the high organic
content of cheese whey. The application of 16.5–33.0 mM
of hydrogen peroxide (H2O2) further enhanced the efficacy
of ozone treatment. It was therefore concluded that ozona-
tion combined with the use of H2O2 could be a useful tech-
nology for the ultimate purification of cheese whey effluents
after an activated sludge biological treatment, resulting in
final streams to be disposed of in natural waterways.

CONCLUSIONS

Although several studies have been published on the appli-
cation of ozone in food processing, to our knowledge, this
is the first-ever systematic review of the use of ozone
specifically in the dairy industry. Transition in milk produc-
tion and processing from chlorine and other conventional

disinfectants to ozone requires an in-depth understanding of
the potential and limitations of ozonation. The clear and
convincing communication of the overall benefits provided
by this advanced, cost-effective and environmentally
friendly technology is a prerequisite to widespread adoption
and usage of ozone by the global dairy industry. Further
research is needed to efficiently and safely utilise ozone and
to find new applications for this powerful disinfectant in the
dairy sector. Some of the key issues that researchers in the
field should focus on include:
• Determining the optimum ozone dosages, contact times
and other treatment variables for every single dairy appli-
cation.

• Fully characterising the specific chemical and physical
reactions taking place during the ozone treatment of dairy
foods containing various levels of total solids.

• Designing and manufacturing advanced ozone-generating
systems whereby purer ozone gas can be produced.

• Developing further combined methods involving ozona-
tion, with particular attention being paid to the economic
feasibility of such novel approaches.

• Clarifying the influence of ozonation on degradation of
certain chemical contaminants, such as mycotoxins, in
milk and dairy foods, and conducting toxicological tests
to determine the possible effects of degradation products
on human health.

• Thoroughly investigating the dose-dependent changes in
structure and functionality of whey proteins during ozone
processing.

• Assessing the positive and negative effects of ozone treat-
ments on sensory properties of milk and dairy products.
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